Apparatus and associated methods relate to displacement-independent remote adjustable coupling of a first suspension member to a second suspension member. In an illustrative embodiment, the first suspension member may move substantially independently of any motion of the second suspension member, when in an uncoupled state. When in a coupled state, for example, the first suspension member may move in response to movement of the second suspension member. In some embodiments, the coupling between members may be performed by removing and/or stiffening one or more degrees of motion of the suspension system. For example, in some systems, a variable shock absorber may be stiffened in response to a control system signal. A remotely coupled suspension system may advantageously provide optimal suspension configuration for various riding conditions.